One of General Stanley McChrystal’s accomplishments as coalition commander in Afghanistan was the genesis of the Afghan Mission Network (AMN),a meshing of the communication links and data feeds used by International Security Assistance Force (ISAF).  The numbers are daunting. 50,000 users from 40 countries of the ISF use something like 30 separate networks, including United Kingdom’s Overtask, Canada’s Land Command Support System, and the American Secret Internet Protocol Router Network (SIPRNET). At least 165 applications (including 13 from NATO) and the data that populated those applications were moved from national networks to the shared one.

However, as Wired reported, McChrystal thinks the technical problems of net-centric warfare are relatively minor compared to the human factors. In a speech to the Network-Centric Warfare conference, McChrystal said that “by far the hardest part” was creating the appropriate “culture.”

The failure to alter our “culture” about intelligence and communications has led not only to dangerous situations, but absurd ones as well. By law, SIPRNET is only available to US armed forces. As a result, two-star British general Nick Carter, commander of Regional Command–South was unable to access information that was available to thousands of the American troops under his authority.  Even McChrystal had trouble getting critical data from intelligence agencies.

SIPRNET will not be replaced by AMN. Instead, AMN will create a Common Operational Picture (COP) for joint warfighting missions such as battlespace management, fires, ISR, counter-IED and force protection.  NATO C3 Agency project manager Wilco Dissevelt told Digital-Battlespace  “…NATO will use one tool and the US will use another tool, but they will be able to see the same information on both. Our job is to ensure that the green dot means the same thing on both systems.”

The COP approach begs the question: what kind of change is the AMN? Is it an automobile or a computer?  When cars first replaced horses, designers were reluctant to give up centuries old customs.  As a result, some early cars reputedly had holders for buggy whips. On the other hand, computers were supposed to usher in the age of the “paperless” office, a phenomenon that is still rare, if not totally non-existent.  If the AMN presents an identical COP as SIPRNET, wouldn’t that make SIPRNET as anachronistic as buggy whips? If SIPRNET still has unique applications and information, is the Common Operating Picture truly all that common?  Maybe, even with a true COP, SIPRNET will still have uses, as paper still does in a modern office.

The cultural issues surrounding AMN highlight not only the human factors, but the importance of the humans themselves.  Personnel who collect intelligence and relay communications can no longer be considered secondary actors in this conflict.  Their actions have profound effects at virtually every strategic and tactical level. As Brig. Gen. Brian Donahue, director of command, control, computers and communications systems at the Army’s Central Command told Signal magazine, “If you think a signal commander or signal officer is not a warfighter, you’ve never been to Afghanistan.”

Some computer manufacturers are eliminating IEEE 802.11b protocols, claiming that it will improve 802.11g.  Since 802.11n is the fastest WLAN standard, why have any legacy Wi-Fi at all?

You need a, b, and g, because not all hot spots are running n. For example, if you’re operating an MQ-1 Predator by a wireless control system, while sipping a Frappuccino at Starbuck’s (you have your fantasies; I have mine), your computer better accommodate legacy Wi-Fi networks.  If you know that your computer will be solely dedicated to a network that only supports 802.11n, then you don’t need connectivity for the older standards.

By the way, when you use your computer to conduct major combat operations from the local coffee house, be careful where you sit; data throughput dramatically decreases the further away you sit from an access point.

Mobile_mesh_networkAt AMREL, we see a lot of other people’s mistakes. Clients frequently come in with tales of woe, asking us to clean up messes made by them or their previous customization company. Some errors are specific to the customization process; others are true for rugged computers in general.

Of course, we’re happy for the business, but we think a little bit of knowledge can save everyone a lot of headaches.  So, before you begin your journey through customization, take this short test to see if you’re ready.

Part One: True or False

Please indicate which of the following statements are true.

1) Mean Time Between Failures (MTBF) is a valid way of comparing quality of parts from different companies.

2) Customizations must be done by third parties.

3) The manufacturer’s warranty never includes customization.

4) Low-volume customizations are too expensive to be practical.

5) The warranty and purchase price reflect the true cost of the computer.

6) A signed obsolescence agreement with your vendor ends your worries about End of Life issues.

7) No such thing as “Customized COTS.”

Part Two: Name three wrong things the narrator did in the following story

“I needed a customized application for rugged computers. It was quite tricky.  My team sat down, created a solution, and wrote the specs for it. We weren’t sure which rugged computer company to use, so we picked a large one, assuming they had the best capabilities. They explained to us that our specs weren’t practical. For one thing, the solid state hard drive required by our specs was much more expensive than we expected. We had to eliminate some of our wireless capabilities and other features in order to meet our pricepoint.”

Part Three: In one word, what is the most important thing to look for in a supplier of customized rugged computers?

For the answers to these questions, click here.

 

AMREL computers serve as Operator Control Units for many unmanned vehicles, so I pay close attention to that application.  Recently an article on Unmanned Combat Aerial Vehicles (UCAVs) caught my interest.  In a posting titled “UCAVs: The Future of Air Warfare,” a self-described Muslim think tank argues that Pakistan can counter the perceived threat of advanced Indian jet fighters with UCAVs.  I found this article interesting, because:

  1. It is an excellent, well –sourced introduction to UCAVs.
  2. Even though the arena of battlefield robots is dominated by a few nations, unmanned vehicles are a worldwide phenomenon. This article makes clear that industry observers need to pay attention to more than just the usual suspects.
  3. The application of unmanned vehicles has primarily been in asymmetric warfare. This article demonstrates a strategic use of robots in a traditional state vs. state conflict.

Some comments posted on this article have attacked the authors’ nationalistic and religious beliefs, which for our purposes here are irrelevant.  More pertinent are the criticisms of Pakistan’s economic and technological ability to field a fleet of UCAVs.  Anyone can stick a sensor or even a weapon on a plane from a hobby store and call it a UCAV. However, that is a far cry from transforming UCAVs into meaningful defense assets. For example, Russia is a global leader in military technology.  Yet, Defense Industry Daily notes that Russia wants to buy Israeli UAVs, because their own production/engineering resources as well as miniaturization capabilities are inadequate.

Even more questionable than Pakistan’s technological capability is the central thesis.  The think-tank’s author specifically proposes that UCAVs can successfully operate against 5th generation jet fighters, which can be defined as “…the fighter aircraft which are newest and most advanced as of 2011.” Does anyone really expect unmanned vehicles to seriously challenge the most advanced manned fighters deployed this year? Sure, UCAVs may eventually render the occupation of jet fighter pilot obsolete, but during the current generation?

Let us know what you think. Just how soon are our Top Guns going to be seriously threatened by UCAVs?

 

For this question, we can give you an absolute, definitive answer: maybe.

If you are among the rarified few who have no problems with budgetary constraints, this is a no-brainer; SSDs are clearly superior.  Fewer moving parts, greater high-temperature endurance, lower power consumption, and just general all around superior ruggedness are a few of their virtues. Not only will your mobile computer solution suffer less damage, but operators will deal with fewer reboots induced by physical shocks.

On the other hand, if you’re like the rest of us, and live in the real world of limited financial resources, you should consider traditional spinning drives. They are MUCH cheaper, and have been successfully used in rugged solutions for years.

Before you determine the specs for your hard drive, take a clear-eyed look at the true needs of your application, and consult your rugged computer professional.  If you do decide to use SSDs, keep in mind that single-level cells (SLC) are more expensive, faster, and reliable than multi-level cells (MLC).

Got a question about rugged computing? Send them to editor@amrel.com