Posts

In a recent posting (Network-centric Warfare: Dead or Alive ?), I wrote about the debate concerning network-centric warfare.  In the wake of the “reorganization” and outright elimination of high-profile initiatives and programs associated with network-centric warfare, Defense vendors are anxiously wondering if it LTM 1will persist as a central doctrine for transforming the military.

Clearly, the military’s obsession with connectivity is far from over.  DARPA is actively working to overcome the military’s traditional anxiety about the security of distributed servers (Pentagon Looks to Militarize the Cloud).  The Army is running a contest for mobile applications and talking about issuing smartphones to every soldier (A Smart Phone for Every Soldier?). Solutions are being displayed for sticking 3G cellular pods on a variety of vehicles, including UAVs (Forward Airborne Secure Transmissions and Communications). 

So the forces that spawned network-centric warfare are still active, but as I concluded in the above-referenced blog post, so are the problems that have frustrated its implementation. Here’s a partial list of obstacles

  1. Money
  2. Lack of interoperability
  3. Money
  4. Development and acquisition pipeline logjam
  5. Money

According to at least one analysis, the current cost-climate climate means “… that the personnel and procurement budgets will be reduced to pay for O&M costs…” (Defense Industry Daily). As the demand for novel technology grows, acquisition budgets shrink.  Defense wants the latest and greatest solutions, they want them now, and they want them to have a TRL level of 9 before they even see them. Government paying for research, testing, validation and verification?  That’s so 20th century.

      Using mature systems to develop advanced, useful solutions for today’s challenges is not impossible.  Working with strategic partners, AMREL has developed System One, a Last Tactical Mile solution, a system composed of entirely battle-proven technology.

      “The Last Tactical Mile” is a classic problem of network-centric warfare. Front-line troops are demanding real-time information. The days are over when data for C4ISR (Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance) only went to the “back-end” (headquarters located away from the front).  However, getting this information into hands of the warfighter is a tremendous problem.

      To appreciate the complexities of “The Last Tactical Mile,” imagine a team of Marines attacking a high value target in littoral waters. They might be deployed on an amphibious assault vehicle (whatever replaces the now-canceled Expeditionary Fighting Vehicle).  In theory, this scenario could require connectivity among a UAV, external ship sensors, satellite networks, the amphibious assault vehicle, mother ship personnel, and the strike team deployed.  Space is limited aboard the ships and all equipment must be ruggedized in order to withstand the harsh maritime and combat environments.

      System One leverages AMREL’s broad range of from-factors for mature computing platforms, which are more than rugged enough to withstand the brutal vibrations of the high-speed landing craft,  the corrosive conditions of the sea, as well as the violent realities of warfighting.  AMREL’s durable, battle-tested PDAs are ideal for the Marine strike team.  AMREL’s portable, rugged tablets could maintain communication with the amphibious assault vehicle’s coxswain as well as the mother ship’s onboard crew. Our fully functional 19/2® servers are1/4 the size of normal rack-mounted units, so they’re perfect for the cramped quarters of the assault vehicle. Designed to be flexible and to maximize connectivity, AMREL’s computers would have no problem tying the whole thing together with a MESH network.

      System One has already successfully demonstrated the connectivity and reliability required for such a scenario. It can be installed on any vehicle, land or sea. It would function perfectly in the high-speed Stiletto boat and is small enough to fit in even the most crowded MRAP vehicle. In fact, it’s so compact, it is even man-portable.

      An example of an advanced solution using mature, field-tested components, System One demonstrates that with careful strategic teaming and a bit of imagination, diminished government resources for research and testing can be leveraged into an opportunity.

      For a more detailed discussion of “The Last Tactical Mile” and System One, please see IDGA’s interview with Luke McKinney, an expert in military intelligence operations and joint mission analysis.

      Popular Science has an article about applications developed for military robots that may find use in the civilian world. One of the spotlighted applications utilizes an AMREL computing platform. Created for iRobot’s PackBot, it allows command and control of unmanned systems, even when there is interference by urban buildings. This customized solution is one of many that leverages the flexibility of AMREL’s computers. Check out “7 Military Robots, Now Modified for Your Living Room.”

      For more information about how AMREL computers are used for the PackBot, visit the “Deployed Solutions” section in our Robotics website.

      They’re built to different standards. AMREL’s ROCKY computers meet military standards for ruggedness, whereas our medical computers meet IEC 60601-1 standard for medical electrical equipment.

      This has led to some hardware differences. ROCKY’s military computers are shielded to meet MIL-STD 461E for electromagnetic interference. To meet EMC (as well as safety) requirements, the medical versions have rubber pads on the bottom and fewer interface connections at its rear.

      Note: Both AMREL’s ROCKY and medical computers are certified by third parties. Unlike other companies, we are not satisfied with unsubstantiated claims of compliance.

      One of General Stanley McChrystal’s accomplishments as coalition commander in Afghanistan was the genesis of the Afghan Mission Network (AMN),a meshing of the communication links and data feeds used by International Security Assistance Force (ISAF).  The numbers are daunting. 50,000 users from 40 countries of the ISF use something like 30 separate networks, including United Kingdom’s Overtask, Canada’s Land Command Support System, and the American Secret Internet Protocol Router Network (SIPRNET). At least 165 applications (including 13 from NATO) and the data that populated those applications were moved from national networks to the shared one.

      However, as Wired reported, McChrystal thinks the technical problems of net-centric warfare are relatively minor compared to the human factors. In a speech to the Network-Centric Warfare conference, McChrystal said that “by far the hardest part” was creating the appropriate “culture.”

      The failure to alter our “culture” about intelligence and communications has led not only to dangerous situations, but absurd ones as well. By law, SIPRNET is only available to US armed forces. As a result, two-star British general Nick Carter, commander of Regional Command–South was unable to access information that was available to thousands of the American troops under his authority.  Even McChrystal had trouble getting critical data from intelligence agencies.

      SIPRNET will not be replaced by AMN. Instead, AMN will create a Common Operational Picture (COP) for joint warfighting missions such as battlespace management, fires, ISR, counter-IED and force protection.  NATO C3 Agency project manager Wilco Dissevelt told Digital-Battlespace  “…NATO will use one tool and the US will use another tool, but they will be able to see the same information on both. Our job is to ensure that the green dot means the same thing on both systems.”

      The COP approach begs the question: what kind of change is the AMN? Is it an automobile or a computer?  When cars first replaced horses, designers were reluctant to give up centuries old customs.  As a result, some early cars reputedly had holders for buggy whips. On the other hand, computers were supposed to usher in the age of the “paperless” office, a phenomenon that is still rare, if not totally non-existent.  If the AMN presents an identical COP as SIPRNET, wouldn’t that make SIPRNET as anachronistic as buggy whips? If SIPRNET still has unique applications and information, is the Common Operating Picture truly all that common?  Maybe, even with a true COP, SIPRNET will still have uses, as paper still does in a modern office.

      The cultural issues surrounding AMN highlight not only the human factors, but the importance of the humans themselves.  Personnel who collect intelligence and relay communications can no longer be considered secondary actors in this conflict.  Their actions have profound effects at virtually every strategic and tactical level. As Brig. Gen. Brian Donahue, director of command, control, computers and communications systems at the Army’s Central Command told Signal magazine, “If you think a signal commander or signal officer is not a warfighter, you’ve never been to Afghanistan.”

      Long-lasting battery power, light weight, and good wireless connectivity are capabilities often demanded by forward-placed warfighters for their rugged computers. GCN’s (Government Computer News)  “Rugged Computing on the Aircraft Flight Line”  describes how these features are also critical for the maintenance of jets, an activity not usually associated with the front-lines.

      GCN does a good job of explaining how application requirements should drive the specs of a computer. For example, one Air Force base uses tablets with scanning capabilities, so that work control documents can be scanned while maintenance technicians were still on the aircraft. This saved time and increased productivity.

      Since AMREL does so much customization, we are accustomed to the kind of analysis displayed in the article, i.e. examining an application’s requirements to determine a computer’s specs.  For examples of fashioning a computer to an application’s needs, visit AMREL’s Customized Solutions.

      Mobile_mesh_networkAt AMREL, we see a lot of other people’s mistakes. Clients frequently come in with tales of woe, asking us to clean up messes made by them or their previous customization company. Some errors are specific to the customization process; others are true for rugged computers in general.

      Of course, we’re happy for the business, but we think a little bit of knowledge can save everyone a lot of headaches.  So, before you begin your journey through customization, take this short test to see if you’re ready.

      Part One: True or False

      Please indicate which of the following statements are true.

      1) Mean Time Between Failures (MTBF) is a valid way of comparing quality of parts from different companies.

      2) Customizations must be done by third parties.

      3) The manufacturer’s warranty never includes customization.

      4) Low-volume customizations are too expensive to be practical.

      5) The warranty and purchase price reflect the true cost of the computer.

      6) A signed obsolescence agreement with your vendor ends your worries about End of Life issues.

      7) No such thing as “Customized COTS.”

      Part Two: Name three wrong things the narrator did in the following story

      “I needed a customized application for rugged computers. It was quite tricky.  My team sat down, created a solution, and wrote the specs for it. We weren’t sure which rugged computer company to use, so we picked a large one, assuming they had the best capabilities. They explained to us that our specs weren’t practical. For one thing, the solid state hard drive required by our specs was much more expensive than we expected. We had to eliminate some of our wireless capabilities and other features in order to meet our pricepoint.”

      Part Three: In one word, what is the most important thing to look for in a supplier of customized rugged computers?

      For the answers to these questions, click here.

       

      AMREL computers serve as Operator Control Units for many unmanned vehicles, so I pay close attention to that application.  Recently an article on Unmanned Combat Aerial Vehicles (UCAVs) caught my interest.  In a posting titled “UCAVs: The Future of Air Warfare,” a self-described Muslim think tank argues that Pakistan can counter the perceived threat of advanced Indian jet fighters with UCAVs.  I found this article interesting, because:

      1. It is an excellent, well –sourced introduction to UCAVs.
      2. Even though the arena of battlefield robots is dominated by a few nations, unmanned vehicles are a worldwide phenomenon. This article makes clear that industry observers need to pay attention to more than just the usual suspects.
      3. The application of unmanned vehicles has primarily been in asymmetric warfare. This article demonstrates a strategic use of robots in a traditional state vs. state conflict.

      Some comments posted on this article have attacked the authors’ nationalistic and religious beliefs, which for our purposes here are irrelevant.  More pertinent are the criticisms of Pakistan’s economic and technological ability to field a fleet of UCAVs.  Anyone can stick a sensor or even a weapon on a plane from a hobby store and call it a UCAV. However, that is a far cry from transforming UCAVs into meaningful defense assets. For example, Russia is a global leader in military technology.  Yet, Defense Industry Daily notes that Russia wants to buy Israeli UAVs, because their own production/engineering resources as well as miniaturization capabilities are inadequate.

      Even more questionable than Pakistan’s technological capability is the central thesis.  The think-tank’s author specifically proposes that UCAVs can successfully operate against 5th generation jet fighters, which can be defined as “…the fighter aircraft which are newest and most advanced as of 2011.” Does anyone really expect unmanned vehicles to seriously challenge the most advanced manned fighters deployed this year? Sure, UCAVs may eventually render the occupation of jet fighter pilot obsolete, but during the current generation?

      Let us know what you think. Just how soon are our Top Guns going to be seriously threatened by UCAVs?