Posts

 Update: This telepresence article inspired more than a few comments in LinkedIn discussion groups.  With the authors’ permission, we are reposting comments made by Tandy Trower of Hoaloha Robotics, and Jim Gunderson of Gamma Two Robots.

“For certain types of scenarios, telepresence is very useful. For example, it has enabled us to explore the surface of Mars, inspect the nuclear reactor buildings in Japan, and enable soldiers to remotely defuse bombs. However, for business and personal/consumer scenarios it is much less clear if the value proposition works. Read more

Airplane1 resized 600One of the hottest topics in the unmanned systems community is civilian applications. As Smithsonian.com reports in Drones Ready for Takeoff:

“The potential seems limitless—handling routine monitoring of pipelines and power lines, for instance, or gathering geomagnetic data about natural resources (a job that entails flying hundreds of miles in a straight line, at low altitude, then moving 50 yards over and flying straight back). Drones could help farmers monitor crops in distant fields, allow real estate developers to perform simple construction jobs in remote or difficult locations or enable environmentalists to spot polluters.”

Read more

In “UAV Implementation at the Infantry Platoon Level” (Military & Aerospace), the author reported “I spent 2 ½ years over 2 deployments to Iraq as an Infantryman and we rarely had good UAV support. When we did have UAV support, it was not always ‘top of the line’ because the operators were FOB based and it was an office job that became a ‘check the block’ duty.”  The author complained that UAVs were not being “pushed down to the platoon level,” because “…most Commanders are concerned about losing platoon level UAVs.”

His comments about the implementation of UAVs are an interesting example of how Human Robot Interaction (HRI) difficulties frustrate the proper implementation of novel technology.  From the very beginning of the introduction of unmanned systems into the battlefield, there has been a debate about the best positioning of human operators.  For the most part, a consensus has emerged that the dangers posed to operators in the front lines are outweighed by the advantages of close coordination with forward-placed warfighters.

In this instance, UAV deployment was influenced not by concerns about the operators, but–according to the author- by fear of losing valuable equipment. Clearly, these commanders hadn’t gotten the memo that the point of unmanned systems is to assume risk, so the troops don’t have to.

Livescience.com in “Real Soldiers Love Their Robot Brethren” reveals that other soldiers also haven’t gotten this memo.  Quoting Peter Singer (author of “Wired for War: The Robotics Revolution and Conflict in the 21st Century”), they describe a “… soldier who ran 164 feet under machine gun fire to retrieve a robot that had been knocked out of action.”

The phenomenon of soldiers risking their lives for robots was also reported in “Why Bomb-Proofing Robots Might Be a Bad Idea” (Wired.com).  In fact, the author of that article suggests that we should reconsider the ideas of outfitting robots with expensive classified electronic countermeasures, because that “…undermines the purpose of having a disposable army of machines to handle irregular war’s most dangerous work.”

So, in addition to obstructing proper implementation, HRI difficulties affect actual combat. A great deal of research has been done on HRI, but human behavior has a way of confounding even the most dedicated researcher.

Even the User Interface (UI) itself can cause unanticipated problems. In an article to be published in the March OCU Pros newsletter, David Bruemmer, VP of R&D at 5-D Robotics reveals some unexpected problems with commonly used UIs.  Simply put, video feeds and other information-rich UIs may actually be detrimental to the operation of an unmanned system (To read this article and receive the OCU Pro newsletter, sign up here).

The unpredictability of how humans interact with robots may frustrate the drive to field novel technology as fast as possible. This obstacle emphasizes the rather unsurprising idea that end-user input is important early in the development process (At least it should be unsurprising to anyone who reads this blog).

Of course, not all unpredictable human interactions with robots have dire consequences.  Check out this video of a “weaponized” BigDog robot being used in ways that the designers surely never envisioned.

One of General Stanley McChrystal’s accomplishments as coalition commander in Afghanistan was the genesis of the Afghan Mission Network (AMN),a meshing of the communication links and data feeds used by International Security Assistance Force (ISAF).  The numbers are daunting. 50,000 users from 40 countries of the ISF use something like 30 separate networks, including United Kingdom’s Overtask, Canada’s Land Command Support System, and the American Secret Internet Protocol Router Network (SIPRNET). At least 165 applications (including 13 from NATO) and the data that populated those applications were moved from national networks to the shared one.

However, as Wired reported, McChrystal thinks the technical problems of net-centric warfare are relatively minor compared to the human factors. In a speech to the Network-Centric Warfare conference, McChrystal said that “by far the hardest part” was creating the appropriate “culture.”

The failure to alter our “culture” about intelligence and communications has led not only to dangerous situations, but absurd ones as well. By law, SIPRNET is only available to US armed forces. As a result, two-star British general Nick Carter, commander of Regional Command–South was unable to access information that was available to thousands of the American troops under his authority.  Even McChrystal had trouble getting critical data from intelligence agencies.

SIPRNET will not be replaced by AMN. Instead, AMN will create a Common Operational Picture (COP) for joint warfighting missions such as battlespace management, fires, ISR, counter-IED and force protection.  NATO C3 Agency project manager Wilco Dissevelt told Digital-Battlespace  “…NATO will use one tool and the US will use another tool, but they will be able to see the same information on both. Our job is to ensure that the green dot means the same thing on both systems.”

The COP approach begs the question: what kind of change is the AMN? Is it an automobile or a computer?  When cars first replaced horses, designers were reluctant to give up centuries old customs.  As a result, some early cars reputedly had holders for buggy whips. On the other hand, computers were supposed to usher in the age of the “paperless” office, a phenomenon that is still rare, if not totally non-existent.  If the AMN presents an identical COP as SIPRNET, wouldn’t that make SIPRNET as anachronistic as buggy whips? If SIPRNET still has unique applications and information, is the Common Operating Picture truly all that common?  Maybe, even with a true COP, SIPRNET will still have uses, as paper still does in a modern office.

The cultural issues surrounding AMN highlight not only the human factors, but the importance of the humans themselves.  Personnel who collect intelligence and relay communications can no longer be considered secondary actors in this conflict.  Their actions have profound effects at virtually every strategic and tactical level. As Brig. Gen. Brian Donahue, director of command, control, computers and communications systems at the Army’s Central Command told Signal magazine, “If you think a signal commander or signal officer is not a warfighter, you’ve never been to Afghanistan.”

Long-lasting battery power, light weight, and good wireless connectivity are capabilities often demanded by forward-placed warfighters for their rugged computers. GCN’s (Government Computer News)  “Rugged Computing on the Aircraft Flight Line”  describes how these features are also critical for the maintenance of jets, an activity not usually associated with the front-lines.

GCN does a good job of explaining how application requirements should drive the specs of a computer. For example, one Air Force base uses tablets with scanning capabilities, so that work control documents can be scanned while maintenance technicians were still on the aircraft. This saved time and increased productivity.

Since AMREL does so much customization, we are accustomed to the kind of analysis displayed in the article, i.e. examining an application’s requirements to determine a computer’s specs.  For examples of fashioning a computer to an application’s needs, visit AMREL’s Customized Solutions.

Check out this video review of our Rocky Rugged Military PDA! This guy puts our PDA through all the paces and does a great job of testing and video taping the results.